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Abstract

Friction plays a fundamental role in the Mechanics of granular materials. Two prob-
lems are considered: (i) heap formation, (ii) granular flow. Both problems admit
closely related mathematical models. In each case, analytical and numerical diffi-
culties are discussed. Efficient and reliable numerical methods are proposed and
implemented. The results are illustrated by several computational experiments.
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1 Introduction

The handling of granular material
poses several important and challeng-
ing problems. In industrial applications
for instance, silos routinely malfunc-
tion; other unwanted effects may in-
clude segregation in powders or disinte-
gration of brittle particles while being
flown down a chute, to mention but a
few. The chemical, mining and phar-
maceutical industries, among others,
incur very significant financial losses as
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a result of such phenomena. Granular
material mechanics also plays a fun-
damental role in countless geophysical
phenomena.

While most, but not all, applications
are time dependent, the time depen-
dent versions of most plasticity models
for granular flows are hopelessly ill-
posed. Typically, equations analogous
to ∂tu = ∂xxu − ∂yyu are obtained
(Schaeffer, 1987).

In this paper, several numerical difficul-
ties linked to simple models for granu-
lar piles (Section 2) and granular flows
(Section 3) are discussed. The models,
which are fairly classical, are described
in a two-dimensional setting, in order to
focus the discussion on the difficulties at
hand. The presented numerical results
are however fully three-dimensional.
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2 Steady state piles

When a dry granular material is poured
on a surface, the slope of the resulting
pile cannot exceed some critical value:
the angle of repose. The pile takes a con-
ical shape, such as for instance that of
sand in the lower part of an hour glass.
Related phenomena also contribute to
the shape and formation of cinder cones,
although this type of application is not
considered here per se. We focus on how
to determine the shape of such piles
when obstacles are present, see Figure 2.
A related and deceptively simple indus-
trial problem is the determination of
the volume of material inside a bin of
possibly complicated geometry includ-
ing inserts, internal walls, etc... In prac-
tice, this is done by having one or sev-
eral gauges measuring the height of the
material at given points. Without some
knowledge of the geometry of the top
free boundary, such methods are inac-
curate.

The problem of finding the shape of a
granular heap has a long history, largely
due to its connection to soil mechan-
ics in civil and military engineering.
Coulomb (1776) was the first to relate
the angle of slip to the friction prop-
erties of the material. Unlike previous
work, he did not assume a priori values
of that angle, see Heyman (1972) for
historical background.

The equilibrium equations are

∇ · T = ρg, (2.1)

where T is the stress tensor, ρ is the
density, assumed to be constant and
g is the acceleration due to gravity.
The constitutive laws are essentially
a multidimensional counterpart to the

standard Coulomb’s law of dry friction.
Unfortunately, there is more than one
meaningful way of generalizing this law
from one to several space dimensions.
A standard model corresponds to the
von Mises yield condition (Nedderman,
1992). In a two-dimensional setting (to
simplify this introduction), it reads

∣∣∣∣σ1 − σ2

σ1 + σ2

∣∣∣∣ ≤ sin δ, (2.2)

where σi, i = 1, 2, are the eigenvalues of
the stress tensor T (principal stresses)
and δ is the angle of internal friction 2 .

Coulomb’s argument is not complete
in that, among other things, it does
not describe the onset of avalanches.
Further, it is assumed that no material
gets into free fall, off an obstacle for
instance. This places some geometrical
restrictions on the problem. Whereas
Coulomb’s theory predicts a constant
slope of the heap surface, experiments
reveal that the slope may vary slightly.
For a growing heap, the slope may be-
come time dependent (Grasselli and
Herrmann, 1999). Impact of falling
particles at the top and interaction
with walls at the bottom may also re-
sult in departure from constant slope
(Grasselli and Herrmann, 2001). Var-
ious models have been proposed to
account for those variations (Bagnold,
1941, Behringher, 1993, Bouchaud et
al., 1995, Boutreux et al., 1997). Here,
the angle of repose is assumed to be
constant and equal to the angle of in-
ternal friction, which is a reasonable
approximation provided the material is
not cohesive (Nedderman, 1992).

Consider a single source above the ori-

2 The angle of internal friction is a convenient
way of describing the coefficient of internal friction
µ of the granular material, since by definition,
µ = tan δ.
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Fig. 1. The Huygens principle at play in
the two dimensional case.

gin of the Cartesian coordinate system
(x, y, z) (several sources can handled by
repeating the approach outlined below
and postprocessing appropriately). The
highest point of the pile is directly be-
low the source and is denoted (0, 0,H).
In the industrial problem, H is mea-
sured and known at all time, and can
be used as a parameter. In what fol-
lows, Ω ⊂ {z > 0} represents obstacles
and/or walls while Λ = {z > 0}\Ω̄ is
the space that can be potentially occu-
pied by the material. The problem is
then, given H > 0 such that (0, 0,H) ∈
Λ, find the part of Λ that is occupied
by the material.

The problem can be recast as one of
traveltime determination. Assume Ω is
cylindrical, i.e., Ω = ω×R+, where ω ⊂
R2. The main idea is to relate the height
u(x, y) of the material at a point P (x, y)
to the time τ(x, y) it would take a sig-
nal emited at the source O to reach that
point. The fixed slope tan δ of the heap
corresponds to a fixed rate of increase of
τ . Following this analogy, the speed of
propagation is then 1/ tan δ. The solu-
tion can be constructed according to the
classical Huygens principle. The wave-
front of a propagating wave emanating
from O conforms, at any instant, to the
envelope of spherical wavelets emanat-
ing from every point on the wavefront
at the prior instant. Figure 1, illustrates
this principle in the case of a circular
right cylindrical obstacle. In the visible

part of the domain, i.e., at points that
can “see” the source, the exact solution
is a cone of half opening angle π/2− δ,
hence the level lines are circular. In the
shadow zone, those lines are bent as the
wavefront turns around the obstacle.

To find the height of material at
P ∈ R2\ω, the problem essentially boils
down to finding the shortest distance
d(P,O) bewteen P and the source
O(0, 0), i.e.

d(P, O) = inf{

1∫
0

|
dγ

ds
(s) | ds, γ ∈ C1([0, 1]; R2),

γ(s) ∈ R2\ω ∀s ∈ [0, 1], γ(0) = O, γ(1) = P}.

This link between the height of the ma-
terial and d(·, ·) while intuitively clear,
can be formally established (Feldman,
1999). For some simple cylindrical ob-
stacles, explicit solutions can be found
by hand. Figure 2, illustrates the exact
shape of the free surface around a cir-
cular cylindrical obstacle.

Fig. 2. Exact heap around a circular
cylindrical obstacle for a material with
an angle of repose of δ = 40◦

For general cylindrical obstacles, the
efficient calculation of d(·, ·) is at the
heart of the problem and is, by it-
self, still an area of research in com-
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putational geometry, see for instance
Kapoor et al., 1997 and the refer-
ences therein. Rather than attacking
this problem directly, we propose an
Eikonal formulation. The obstacle is
characterized by the fact that the ma-
terial (or wavefront) cannot penetrate
it. Equivalently, this corresponds to a
vanishing speed of propagation there. If
F denotes the slowness, i.e., the inverse
of the speed, we set

F (x, y) =

 tan δ if (x, y) /∈ ω,

∞ if (x, y) ∈ ω.

The traveltime τ then satisfies

|∇τ |=F in R2, (2.3)
τ(0, 0) = 0. (2.4)

We have therefore recast our problem
into finding τ that solves (2.3, 2.4) from
which the height u is easily obtained
through u(x, y) = max{H − τ(x, y), 0}.
Equation (2.3) is the Eikonal equation;
such a formulation is typical of travel-
time problems, for instance related to
geophysics (van Trier and Symes, 1991).

The Huygens principle can be viewed
as a selection mechanism that picks
among all the (weak) solutions to (2.3
, 2.4) the one that respects causality
or, in other words, the fact that infor-
mation propagates “one way”. There is
no mechanism in (2.3, 2.4) that ensures
τ to go from smaller values to larger
values when moving outwards from O
(“sawtooth” solutions are possible).
The relevant solution is well known to
be the viscosity solution (Crandall et
al., 1983, 1984, Sethian, 1999).

Consider now a general three dimen-
sional obstacle. In standard three di-
mensional traveltime problems (Sethian
and Popovici, 1999), level sets of the

time of propagation τ are surfaces and
all spatial dimensions essentially play
an identical role. Our problem is clearly
different in that level sets for τ or the
height u are still curves, as in the pre-
vious two-dimensional case. The only
difference between our two and three
dimensional formulations is the role
played by the obstacle. A parallel can
still be drawn with the classical three
dimensional problem if instead of con-
sidering a spherical propagation of the
signal emited by the source, one con-
siders a “cylindrical” mode of propa-
gation. In other words, there is infinite
speed of propagation in the z direction
(z cannot be interpreted as a pseudo-
time anymore). As before, one solves
(2.3, 2.4) but now the slowness F is
itself a function of the unknown τ , i.e.

F (x, y, τ) =

 tan δ if (x, y, u(x, y)) /∈ Ω,

∞ otherwise,

where u(x, y) = max{H − τ(x, y), 0}.

The design of efficient numerical meth-
ods for the resolution of Hamilton-
Jacobi equations is a very active field
of research, see for instance Crandall
and Lions, 1984, Osher and Shu, 1991,
Rouy and Tourin, 1992, Jiang and
Peng, 2000, for ”standard” approaches.
Recently, a lot of attention has been
focused on the design of fast methods.
The Fast Marching Method (FMM)
(Tsitsiklis, 1995, Sethian, 1999, Sethian
and Popovici, 1999) is one example of
such fast methods. It combines a heap
sort algorithm with the so-called Dijk-
stra algorithm (Dijkstra, 1959) and has
complexity O(Ntot logNtot) where Ntot

is the total number of nodes. The Fast
Sweeping Method (FSM) (Tsai et al.,
2002, Zhao, 2002) is another promising
example of a fast method. It combines
a Godunov flux with a Gauss-Seidel
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like iterative process and has complex-
ity O(Ntot). In both cases however,
several issues related to accuracy are
unresolved.

As observed in Qian and Symes, 2002,
in the present single source point case,
a singularity of the traveltime field (and
hence the height) is clearly located at
the source itself. Therefore unless spe-
cial care is taken near the source, a
severe loss of accuracy results. Table 2
illustrates this phenomenon. Using
a purely upwind second order FMM
for solving a two-dimensional Eikonal
equation with constant slowness leads
to a method that is only roughly first
order. Second order convergence is ob-
served only if the exact solution is pre-
scribed around the source in the mesh
independent domain.

In general, prescribing the exact so-
lution in a fixed neighborhood of the
source may be problematic. For in-
stance in case of a non constant slow-
ness, the exact viscosity solution may
not be available. In the present case
the slowness is constant away from ob-
stacles and thus, this heavy handed
initialization step can be easily per-
formed. However, when obstacles are
present, points that naturally appear in
the numerical stencil cannot be used.
As a result, a loss in accuracy is to be
expected. We refer to Ahmed et al.,
2002, for comments on how to combine
”marchability” and accuracy by local
adaption of the stencil. The issue of
accuracy of the marching methods is in
fact delicate due to the possible exis-
tence of accuracy barriers. For (linear)
hyperbolic conservation laws, there is
an extensive literature on optimal ac-
curacy. For instance, it is well known
that stable one-sided discretizations of
∂yu = ∂xu can only be at most of order
two (Iserles and Strang, 1983). Similar

2nd order

N L2 rate L∞ rate

50 6.48(-2) 1.83(-2)

100 3.50(-2) .89 9.38(-3) .97

200 1.81(-2) .95 4.74(-3) .99

400 9.26(-3) .97 2.38(-3) .99

800 4.67(-3) .97 1.19(-3) 1.0

1600 2.35(-3) .99 5.97(-4) .99

corrected 2nd order

N L2 rate L∞ rate

50 2.05(-2) 6.77(-3)

100 4.96(-3) 2.0 1.65(-3) 2.0

200 1.20(-3) 2.0 4.07(-4) 2.0

400 2.96(-4) 2.0 1.01(-4) 2.0

800 7.33(-5) 2.0 2.51(-5) 2.0

1600 1.82(-5) 2.0 6.26(-6) 2.0

Table 1
Comparison between the orders of con-
vergence of FMM with corrected values,
i.e., seeding of the exact in a neighbor-
hood of the source and without.

result should also be expected to hold
here, as FMM is a kind of one-sided
method.

Figure 3 illustrates the efficiency of the
method in the efficiency of the numeri-
cal method on a fully three dimensional
case.

3 Plastic flows

In contrast to the static problems from
the previous section, we now turn to
simple granular flows. Following Scha-
effer (1987) and the remarks in the In-
troduction only established, i.e., steady
state, flows are considered. The govern-
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Fig. 3. Computed heap around a trun-
cated conical obstacle for a material with
an angle of repose of δ = 40◦

ing principles are conservation of mo-
mentum and mass. Those are respec-
tively given by the equilibrium equation
∇·T = ρg, (2.1), from the previous Sec-
tion, together with the equation of con-
tinuity

∇ · v = 0, (3.5)

where v is the velocity. In a two-
dimensional setting for instance 3 , (2.1,
3.5) is a set of three scalar equations for
five scalar unknowns, three components
of the 2 × 2 symmetric stress tensor
T and two components of the velocity
v. The system is closed by imposing
two constitutive laws, a flow rule which
links the stress tensor T to the strain
rate tensor and a yield condition, see
Jackson, 1983, Schaeffer, 1987, Ned-
derman, 1992 for a full discussion. The
yield condition corresponds to the fun-
damental assumption that the material
has reached yield everywhere, i.e., it
deforms everywhere. Mathematically,
the inequality (2.2) is now an equality;
it can be rewritten

3 Our study pertains to the full three-
dimensional case, a two-dimensional setting is only
adopted for the purpose of exposition.

σ1(T )
σ2(T )

=
1 + sin δ
1− sin δ

. (3.6)

It is a quadratic algebraic constraint:
the entries of T take values on a cone –
yield surface, see Figure 4. One can note
that for metals, unlike granular mate-
rials, the yield surface is a topological
cylinder (Han and Reddy, 1999). Here,
the constitutive relations are homoge-
neous of degree zero in the elements of
the strain rate tensor (Jackson, 1983)
which reflects the very unintuitive be-
havior of granular materials.

Fig. 4. Yield surface corresponding to
(3.6). The variables σ and ψ are the
Sokolovskii variables.

The resolution of the above sys-
tem of equations presents in general
formidable mathematical and numer-
ical difficulties. In some special cases
however, solutions can be constructed.
In the early 1960’s, Jenike (1961), dis-
covered similarity solutions for the
steady state equations governing the
flow of granular materials under gravity
in a conical or wedge–shaped hopper,
see Figure 5. In these solutions, particle
paths are radial lines converging on the
vertex of the hopper. For this reason,
the solutions are referred to as radial
solutions. The similarity is reflected in
scalings of the stress and velocity with
respect to radial distance r. Namely,
those similarity solutions are such that
generic stress and velocity entries Tij

and vi satisfy
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Fig. 5. Geometry and coordinate
systems for the two dimensional,
wedge-shaped hopper and the three di-
mensional conical hopper.

Tij(r, θ, φ) = r T 0
ij(θ),

vi(r, θ, φ) =
1
r2
v0
i (θ),

where (r, θ, φ) refers to a spherical
coordinate system with origin at the
vertex of the hopper. The stress de-
creases along particle paths while the
particles accelerate. Radial solutions
form the basis for much of the work
on the design of mass flow hoppers,
in which the flow is thought to be ap-
proximately radial. The stability of the
above solutions has been analyzed by
Pitman (1988) and Gremaud et al.,
2000. Their use has been generalized
to axisymmetric domains with inserts
(Gremaud et al., 2000). The gener-
alization of Jenike’s solutions to non
axisymmetric pyramidal domains 4 has
proved surpringly challenging. This
seemingly routine generalization has
lead to extremely interesting results.
For instance, breaking the axial sym-
metry implies secondary circulation. In
short, Jenike’s does not generalize to
that case. Further, new resonance phe-
nomena have been brought to the fore,
see Gremaud et al. 2002.

Similarity solutions can only be consid-
ered as rough approximations in most

4 Those are domains invariant under transforma-
tions of the type r 7→ cr where the radial spherical
coordinate.

practical cases where no ”invariance”
in the radial direction exists for most
containers. The full system of equations
(2.1, 3.5, 3.6), together with appropri-
ate constitutive equations and bound-
ary conditions has thus to be studied
and solved. The system is differential
algebraic in nature and unlike, say,
problems in fluid dynamics, there is no
obvious way to solve the algebraic con-
straint (3.6). Even though the topic of
differential algebraic equations (DAE)
has received a lot of attention in the
ODE community (Brenan et al., 1996),
most of the successful theoretical and
numerical ideas developed there are
just starting to be migrated to the more
challenging cases of partial differential-
algebraic equations (PDAEs) (Martin-
son and Barton, 2000).

The following problem can be consid-
ered as an illustrative example of the
difficulties attached to solving (2.1, 3.5,
3.6) and similar problems 5

∂yU + ∂xV = 0, (3.7)

U2 + V 2 = 1. (3.8)

Three main types of methods can be
considered: (i) Parametrization of the
manifold describing the constraint: the
algebraic constraint is solved and its
solution plugged into the PDE. (ii) In-
troduction of ”stream functions”: the
PDE is ”solved” and its solution plugged
into the algebraic constraint. (iii) Use of
existing DAE techniques such as con-
straint stabilization: both the algebraic
and differential parts of the problem are
kept.

Parametrization of the manifold cor-
responding to the yield surface is by

5 Without loss of generality, one can consider the
case of vanishing right hand for both (2.1) and
(3.7), through an adequate change of variables.
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far the most common approach and
we focus on it in this exposition. Suit-
able local coordinates are introduced
to solve the equations on that mani-
fold (Potra and Rheinboldt, 1990). For
(3.7, 3.8), one would set U = cosψ
and V = sinψ, for instance. In the
case of the full problem (2.1, 3.5, 3.5),
similar parametrizations (Sokolovskii
variables) can be found (Sokolovskii,
1965, Nedderman, 1992), see Figure 4.
It should be noted however that such
a reformulation destroys the conserva-
tion form of the equations, preventing
any possibility of reliably analyzing or
computing any nonsmooth solutions.

Another possibility consists in solv-
ing the algebraic equation, that is
representing the yield surface as a
graph rather than a parametric surface.
The advantage is here that conserva-
tion form is preserved. In Gremaud
and Matthews, 2000 and 2001, and
Matthews, 2000, this approach was fol-
lowed successfully in conjunction with
the use of a discontinuous Galerkin
method, see Cockburn and Shu, 1998,
in the references therein. The applica-
tion of this method to three dimensional
hopper flows is illustrated in Figure 6.

For both approaches, parametric sur-
face and graph, it may not be possi-
ble to use the same parametrization
throughout the whole integration. For
instance, solving for V from (3.8) and
then plugging into (3.7) reveals some
general problems. First, one may get
more than one solution. For the full
problem, this corresponds to the ex-
istence of passive and active states
(Nedderman, 1992). Second, as can be
clearly from (3.7, 3.8), the speed of
propagation can be unbounded.

Our calculations have brought to the
fore significant difficulties attached to

Fig. 6. An incompressible, perfectly plas-
tic Mohr-Coulomb material is flowing
under gravity in a conical hopper with
a half-opening angle of 30 degrees. The
wall of the hopper switches from rougher
to smoother a third of the way down.
Spherical coordinates are used. Top: Trr,
bottom: vθ.

the standard model (2.1, 3.5, 3.6). For
instance, the precise nature of the flow
rule for a granular material has been
the object of some controversy for a
long time (Jackson, 1983). The issue is
whether principal stresses and princi-
pal strain rates are aligned. Some mod-
els allow for some missalignment (de
Josselin de Jong, 1971, 1977, Spencer,
1986, 1997) while some others do not
(Savage and Sayed, 1979, Jackson, 1983,
Jenike, 1961, 1987, Schaeffer, 1987,
Nedderman, 1992. Although, there ap-
pears to be convincing experimental
evidences of some missalignment tak-
ing place, see e.g. Drescher, 1976, as
well as our results on Figure 7, whether

8



Fig. 7. Comparison of the prediction for
the radial velocity profile (similarity so-
lution) between the predictions obtained
using a Tresca yield condition (curve la-
beled ”Jenike”, essentially (3.6)), a von
Mises yield condition, Spencer’s model
(Spencer, 1986, 1997) and experimental
values taken from Cleaver and Nedder-
man, 1992, Figure [8]. The experimen-
tal setup is kale seeds in an aluminum
hopper (angles are in radians).

it is of the kind predicted by the above
mentioned models is not clear at all.
Further, those models typically require
a very high degree of symmetry (at
least axial symmetry); we are aware
of no fully three-dimensional model
allowing missalignment.

In some cases, calculations (Matthews,
2000, Gremaud and Matthews, 2001)
have shown the standard model to lead
to unphysical solutions. Depending on
the boundary conditions, solutions may
locally be in states that are not energet-
ically acceptable (Harris, 1986). Care-
ful analysis has shown those phenomena

not to be numerical artifacts 6 . To cir-
cumvent those difficulties, we are in the
process of studying the full plasticity
problem (2.1, 3.5) with a von Mises con-
dition instead of the more usual Tresca
condition, see Nedderman, 1992, Gre-
maud et al., 2002. In many, but not all,
cases of interest the corresponding sys-
tem is elliptic (Schaeffer, 1987), simpli-
fying greatly the handling of boundary
conditions. However, the stress problem
does not decouple and all variables have
to be solved for at once.
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